
International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Slicing Layered Architecture for Characterizing
Reuse-Driven Software Engineering

Divanshi Priyadarshni Wangoo
Assistant Professor

Department of Computer Science Engineering & Information Technology
Amity School of Engineering & Technology
Amity University, Gurgaon, Haryana, India

Abstract— This paper presents an efficient methodology for representing the layered architecture modules in terms of slicing object
components. The goal is to reduce the software dependencies in the overall architecture style characterizing the objective of Reuse-driven
Software Engineering. The dependency graphs for the high level component systems structures the application systems for making reuse
cost-effective and ensures deployment of high quality software systems to the end users. Moreover, the Lay_Slice Dependency Graph helps
in aligning the reuse levels in the component systems to a comprehensive pattern that improves the productivity and quality of the reuse
business process. The slicing layered architecture ensures a well-defined architecture system with new slicing based Object-Oriented
modeling techniques that helps in more systematic dealing with the complexity of large software systems.

Index Terms— Reuse Driven Software Engineering (RESB), Lay_Slice Dependency Graph (L_SDG), Lines of Code (LOC), Unified
Modeling Language (UML), Slicing, Application Systems, Component Systems.

—————————— u ——————————

1 INTRODUCTION
HIS paper presents an efficient technique for enhancing
software reuse in Reuse Driven Software Engineering
(RESB). Information systems built on large-scale in today’s

modern world is very complex and are subjected to standards
that are constantly changing. A good software architecture is
necessary for managing the intrinsic complexity prevalent in
the changing software needs. The architecture of a software
system defines that particular system in components that are
computationally driven with connections existing among those
components. In Object-Oriented systems, the overall software
architecture is determined by statically organizing the software
into subsystems with interfaces interconnecting the subsystems
together. Communication overhead in large organizations in-
creases as coordinating with the organizations distributed
geographically requires the software engineers to put more
efforts in proposing a good software architecture. A right and
well-defined software architecture will reduce much of the
above stated problems as it will help the software engineers
working on the architecture to better understand the scenario.

Reuse Driven Software Engineering (RESB) or Reuse
Business on the organizational level consists of several
elements like architectural group, component developers,
project groups, support groups and reuse manager all
interacting together for organization’s successful reuse.
For architecting the components and applications in a
layered architecture system, the reuse business rests

in the three layers of components that go into the application
system. Layered modular architectures in which application
systems are build form component systems require extensive
RESB techniques for making the reuse cost-effective. There is a
need of good object-oriented techniques which will make the
reuse process more efficient in terms of increased perfor-
mance, cost and reduction in time to market and propagation
of bugs from the reused software. All the reuse engineering ef-
forts are best utilized when all the factors leading to the build-
ing of a good architecture system is properly utilized and
managed. The new software systems build from the old soft-
ware systems incorporate all the features existing in the latter
to give rise to a new software domain keeping the characteris-
tics of the latter. This capability of reuse systems comes along
with inheriting all the features of the reused system including
the bugs present in the reused code. The novel systems need
to build a reuse mechanism wherein the software inheriting
capability comes along with identifying the reused software
with promising bugs present so that they are not propagated
in the new software system build. This ensures making the re-
use business process more systematic and bug-free and thus
enhances the cost-effective and quality ensuring approach to
development of application systems.

 Thus, slicing techniques used in the layered architecture
 enhances reuse in the application from component systems and
supports reuse business processes using various Object-

T

986

IJSER

International Journal of Scientific & Engineering Research Volume 6, Issue 12, December-2015
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Oriented slicing techniques. The slicing technique introduced
in this text incorporates all Object-Oriented features for
dynamically slicing the components in the component system
layer of the software layered architecture system.

The objective of the paper is to introduce slicing techniques at
the component level of the layered architecture that will make
reuse business more effective in terms of cost and time. By re-
ducing the software dependencies at the component level, the
application systems will incorporate the reused component
which will be free from bugs and thus will enhance the perfor-
mance of the new system built. Reusing the components in the
component systems for building new application in the appli-
cation systems incorporates incremental and iterative software
engineering lifecycle at all stages of the process. As a result, the
application systems will be build more efficiently with a key
enhancement in delivery of the software in the market with
time and cost-effective performances of the software applica-
tion built.

2 REUSE-DRIVEN SOFTWARE ENGINEERING (RESB)

The Reuse-Driven Software Engineering is composed of four
dimensions with an interlocking dimension. The four domains
are- business orientation, engineering orientation, technical
 sequence and business process reengineering [2]. The reuse
business rests in the three layers of the components that are
inherited by the applications residing on the top layer of the
layered system architecture. The goal of reuse business is to
produce a novice application system by reusing the
 components of the defined component systems. This ensures
code reusability, saves developers time in writing the same
code again, improves quality and accelerates the speed of
software delivery to the end user. Thus, managing the reuse
business is the most critical part for and overall development of
a reuse business organization.

2.1 Incremental Systematic Reuse for Concurrent
 Processes

The Software Development Lifecycle process encompasses all
the stages necessary for building a software application form
planning, communication, analysis, design to implementation,
testing and deployment to the end user [1]. Software
engineering practices are rigorously scrutinized so that the
resultant software is produced with enhanced performance and
productivity. Most of the software systems are build
incrementally. The step by step development of a system is usu-
ally released in a series of versions, releases, increments or
cycles. The various models are iterated with each increment
and modeling activities are overlapped with the identification
of associations among the models. Efficient debugging
processes require a lot of effort. Debugging process aims at find-
ing, localizing, modifying and correcting errors by setting

 breakpoints [4]. If bugs are identified at an early stage of software
development much effort of the developer is utilized in making
the software more efficient and cost effective.
 Thus, building of a good system architecture requires more
careful analysis and design processes along with implementa-
tion of all the important steps described for the software devel-
opment lifecycle.

3 SOFTWARE LAYERED SYSTEM ARCHITECTURE

A layered system architecture is a software architecture that
organizes software in layers and each layer is constructed on
the top of more general layer [2]. A layered system encom-
passes system interaction all at levels and in both horizontal
and vertical dimensions. Analyzing the static dependencies
among the systems in the layered architecture leads to identifi-
cation of associations from some generalized systems to more
specific systems in a bottom-up hierarchy. The vertical
dimension of the layered system helps in identification of static
dependencies existing among the systems across the layers. The
dependent component systems can be extracted for effective
utilization into the application systems that would result in
more efficient and optimized software production.

3.1 Modeling Layered Architecture with Slicing
Methodology

The application of slicing methodology to the layered system
 architecture is important from the reusability of component
 systems viewpoint. As the old component systems are
analyzed for their productive capacity in building of a new
software systems, some important factors such as bugs remain hid-
den from the developer leading to more efforts in removing the
bugs first from the component system and then from the bugs in-
herited in the application systems. The system prototype of the
building software is needed for rapid iterative development result-
ing in controlled costs and early availability of the prototype for
experimentation purposes [5]. Slicing methodology encompasses
the use of various dependence graphs involving all the object-
oriented features such as objects, classes, encapsulation,
abstraction, inheritance through promoting reusability. The slicing
criterion for program slicing is represented by <v, p>, where v is the
program variable and p is the program point [3]. Thus, slicing en-
hances all the object-oriented features for promoting efficient reus-
ability of software components and helps in managing the
reuse business process.

4 IMPLEMENTING LAY_SLICE IN ARCHITECTURE
COMPONENTS SYSTEMS

 The layered architecture system is composed of application
systems residing at the top level that are built from component

987

IJSER

International Journal of Scientific & Engineering Research Volume 6, Issue 12, December-2015
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

systems in lower layers [2]. A layered architecture is a well-de-
fined software architecture that systematically manages as well
as organizes software in layers. Each layer in the layered
architecture resides at the top level component of a more
generalized layer. The top level or upper layers are more
specific while the bottom level or lower layers are more general
in nature encompassing the type of systems build on the
respective layers. The slicing methodology is introduced in
the components that reside in the business-specific and
middleware layer of the layered architecture. The four layers
of the layered architecture have distinct characteristics that
 dynamically characterize the role of each layer. The topmost
layer is the application system layer which contains one
application system for each software system, the next layer
being the business-specific layer contains a number of
business-specific component systems, the middleware layer
offers component systems that provides utility classes and
platform- independent services and the last layer being the
system software layer contains the software for the computing
and networking infrastructure [2]. The layered system
consisting of application and component systems is described
below in Fig. 1 as follows.

Application Systems

Business-Specific Component Systems

Middleware

System Software

Fig. 1. A layered system architecture consisting of four
layers- application, business-specific, middleware and
system software

4.1 LAY_SLICE DEPENDENCY GRAPH (L_SDG):
ASSESSING LAYERED DEPENDENCY GRAPHS
FOR ARCHITECTURE & COMPONENTS SYSTEM
MODELS

The LAY_SLICE DEPENDENCY GRAPH (L_SDG) is a
layered system dependence graph that takes as input the
component system, components to be reused in the
component system and the facade name and gives as output
the dependencies of the reusable components in the
application systems build from the component systems. The
dependencies are identified in the lines of code
accompanying the system architecture for the software
system. The L_SDG computes the dependencies subjected to
the following layered slicing criterion

D= < CS, ...…ࢉ <Fa ,ࢉ

Where D is the result of the computed dependencies, CS
refers to the component system consisting of components
available for reuse, ...……ࢉ are individual components ࢉ
in the component system and Fa refers to the facades used
for importing the reusable components to be reused in the
application systems.

The software system of the layered architecture employing
reuse business is systematically analyzed with the slicing
algorithm Slice_La which identifies the dependencies
among the components in the component systems of the
layered architecture. The components are specifically
subjected to the layered slicing criterion which results in
the identification of dependent components in the layered
 system. Thus, the components to be reused in the
 application systems are recognized and any bug prone or
least utilized component can be prevented to be utilized as
 a reusable component in the application system defined at
the application level of the layered system. The Slice_La
ensures optimum utilization of memory with optimized
reduced levels of costs and delivery time to the reuse
organization for further enhancing application system
product delivery to the end users.

4.1.1. Slice_La: Slicing Algorithm for Component
 Dependencies in Layered Architecture

The Slice_La algorithm is a layered slicing algorithm for
identifying the dependent components in the component
systems to be reused in the development of new application

988

IJSER

International Journal of Scientific & Engineering Research Volume 6, Issue 12, December-2015
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

systems which are overall characterized by the layered
 system architecture. The algorithm takes as input the

L_SDG and the layered slicing criterion and gives as output
 the dependent components in the component systems. The
 algorithm consists of the following steps: -

Slice_La Algorithm:

Step 1: - Start and Construct the L_SDG for the specific
 application system to build based on the layered system
architecture.

Step 2: - Specify the individual components ...…ࢉ to be ࢉ
reused in the component system CS defined for the layered
architecture.

Step 3: - Build the facades Fa for packaging the components
identified for reuse in the application systems

Step 4: - Compute the dependencies D with the help of the
layered slicing criterion

D= < CS, ...…ࢉ <Fa ,ࢉ

Step 5: - Locate the identified dependent components which
are not compatible for reuse and mark them separately.

Step 6: - Repeat steps 2-4 for identification of new
component systems

Step 7: - Reuse the best components in the component
Systems for building application systems in the layered
architecture.

Step 8: - Stop repeat the algorithm for other layered system
architectures.

4.1.2. Reusable components for Design and
 Implementation

The analysis model is developed by mapping the use case
model and by reusing analysis components. The design model
is the blueprint of the software code built for the underlying
software system. The determination of reusable components is
an essential step for designing of the new application systems.
Time critical systems that require the delivery of software
system in a short span of time requires extensive construction
of the application system at the developer’s end. The
component based software application development resolves

most of the developer’s problems in managing the reusable
components. But bugs present in the existing software made
available for reuse persists in the new application as well. In
order to identify the components with bugs at an early stage of
reuse business process will enhance the work of an application
developer along with making the delivery of a bug free soft-
ware in a cost effective and timely manner.

The ATM transaction process example is used here for
identifying the reusable components in the component systems.
All the elements in the example are drawn from the point of
view of Unified Modeling Language (UML) notations. The
UML diagram for the component system MyAccount Transac-
tion is drawn as defined in Fig.2 below: -

 Fig. 2. The Component System MyAccount Transaction

989

IJSER

International Journal of Scientific & Engineering Research Volume 6, Issue 12, December-2015
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

The lines of code (LOC) are defined in Fig.3 and the
 corresponding L_SDG of Fig.3 is drawn in Fig.4 as below.

1. public class MyAccount Transaction
2. {
3. public class systemmodel
4. {
5. public class usecasemodel
6. {
7. int ac_ta;
8. }
9. public class designmodel
10. {
11. public static myaccount (int a)
12. {
13. System.out.println(“the account number is” +a);
14. }
15. public static mytransaction (int ta)
16. {
17. System.out.println(“the transaction number for the account is” +

ta)
18. }}
19. public class implementationmodel
20. {
21. int ma;
22. }
23. }}
24. public class facademytransfer extends designmodel
25. {
26. public static void main (String args [])
27. {
28. public static myaccount’ (int fa)
29. {
30. System.out.println(“the account number is” +fa);
31. }
32. public static mytransaction’ (int fta)
33. {
34. System.out.println(“the transaction number for the

account is” + fta)
35. }
36. }
37. }

Fig. 3 LOC for the Component System MyAccount Transaction

The Lines of Code (LOC) defined above represent the reuse
criterion of importing components packaged into the facades
and reusing the packaged facades in the application system
deigned for the layered system architecture. The corresponding
L_SDG for the above figure is described next.

Fig. 4. The corresponding L_SDG for Fig. 3.

. In the above figure, the dependency edges are shown with
dashed arrows and control edges with straight arrows. The
dependency edges represent the relationships in the UML
component diagram where components packaged in the form
of facades for reuse purpose.

990

IJSER

International Journal of Scientific & Engineering Research Volume 6, Issue 12, December-2015
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

 The complete architecture showing the layered system with
the component system and the corresponding application sys-
tem importing from the component system is shown in Fig.5
as below.

 Fig. 5. The Application System My Payment importing components
 from the Component System MyAccount Transaction

5 Slice_La Algorithm Implementation Results

 The implementation of Slice_La algorithm gives the precise
identification and computation of the dependent compo-
nents either from the components imported in the facades or
the facade components imported into the application system
for reuse in the layered architecture. The Slice_La algorithm
produces the following results that are tabulated in Table 1
defined below: -

Table1
Execution results of Slice_La Algorithm

S.No Components
in the

<<Component
System>>

...…ࢉ ࢉ

<<Application
Systems>> in
the layered

 architecture

..…

Or <<façade>>

Layered

Slicing

Criterion

< CS,
...…ࢉ ,ࢉ
Fa>

Dependent
Components

D

1. MyAccount’ <<façade>>

MyTransfer

<<MyAc-
count Trans-
action, My-
Account’,
MyTransfer

MyAccount

2. MyTransaction’ <<façade>>

MyTransfer

<<MyAc-
count Trans-
action,
MyTransac-
tion’,
MyTransfer

MyTransac-
tion

3. MyAccount’’ <<application sys-
tem>>

MyPayment

<<MyAc-
count Trans-
action, My-
Account’’,
MyPay-
ment>>

MyAccount’

4. MyTransac-
tion’’

<<application sys-
tem>>

MyPayment

<<MyAc-
count Trans-
action,
MyTransac-
tion’’,
MyPay-
ment>>

MyTransac-
tion’

991

IJSER

International Journal of Scientific & Engineering Research Volume 6, Issue 12, December-2015
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

6 CONCLUSION

The paper presents an efficient layered slicing algorithm for
 identifying the concrete components in the component
system for reusability in the application systems of the
layered architecture. The software dependencies in the
layered system are identified in all the derived components
and are analyzed prudently for effective importing of the
components into the application systems. This ensures
 managing the reuse business process in the most efficient
and cost effective manner along with optimized
performance of the new application system build.

REFERENCES
[1] Pressman, S. Roger, “Software Engineering: A Practitioner’s Approach”,
McGraw Hill, International edition, 6/e,2005.

[2] Ivar Jacobson, Martin Griss, Patrik Jonson, “Software Reuse Architecture,
Process and Organization for Business Success”, ACM Press, 2000.

[3] Donglin Liang and Mary Jean Harrold , “Slicing Objects using System De-
pendence Graphs,”International Conference on Software Maintenance, Wash-
ington, D.C, pp.358-67, November 1998.

[4] Baowen Xu Zhenqiang Chen, Dynamic Slicing Object-Oriented Programs
for Debugging, Proceedings of the Second IEEE International Workshop on
Source Code Analysis and Manipulation (SCAM’02), pp.115-122, 2002.

[5] Ian Sommerville, Software Engineering, Pearson, 9th Edition, 2011.

992

IJSER

